Aeromedical and Shock

E. James Radin, MD
6 June 1999
Shock

Definition: The inability to provide adequate oxygenation to the tissues

Combination of the effects of

- Inadequate BP
- Inadequate Cardiac Output
- Inadequate Hemoglobin
- Inadequate Oxygenation
- Other
Shock

Classification:

1. Inadequate Delivery

2. Inadequate Utilization
Shock

- Multi - system
- Single system
- Progressive organ failure
- Adequate perfusion of one organ may not be adequate for another
- Regulation of flow to organ normally well controlled, but shock disrupts normal auto-regulation
Inadequate Delivery

1. Extracellular:
 - Inadequate blood volume
 - Heart Failure

2. Types:
 - Respiratory
 - Hypovolemic
 - Cardiogenic
 - Neurogenic
 - Allergic
 - Obstructive
Inadequate Utilization

1. Intracellular Process:
 - Oxygen / Glucose not converted to energy
 - Normal cellular disruption

2. Types:
 - Infectious or Septic Shock
 - Metabolic Shock
ROGER RUDDER

SAY ROG, SINCE WE'RE ON INSTRUMENTS - HOW ABOUT CHECKING THE OL' ATTITUDE GYRO?
Pathophysiology

Oxygen Transport:

Oxygen Content 18 vols %

\[\text{Oxygen Transport} = [\text{Hgb} \times \text{SaO2} \times 1.34] + [\text{PaO2} \times 0.0031] \]

Oxygen Delivery:

\[\text{Oxygen Delivery} = [(\text{Hgb} \times \text{SaO2} \times 1.34) + (\text{PaO2} \times 0.0031)] \times \text{C.O} \]
Pathophysiology

Oxygen Consumption:

Arterial Oxygen Content - Mixed Venous Content

\[
[\text{Hgb} \times \text{SaO}_2 \times 1.34] \times [\text{PaO}_2 \times 0.0031] \quad \text{minus} \quad [\text{Hgb} \times \text{SvO}_2 \times 1.34] \times [\text{PvO}_2 \times 0.0031]
\]
Pathophysiology

Extraction Ratio:

Oxygen Delivery / Oxygen Consumption

- Normally 0.24
- < 0.18 Not Utilizing
- > 0.35 Not delivering enough
Pathophysiology

Blood Gas

- Measures only dissolved O2 Value for whole blood the same as plasma ! ! !
- PaO2 not that useful
- Hgb and SaO2 much more helpful
- pH, perhaps the other most useful part of the ABG
- pH allows the differentiation of compensated vs non - compensated shock
Pathophysiology

- ABG
 - pH 7.37, PaCO2 25, PaO2 100
 - pH 7.28, PaCO2 25, PaO2 75
 - pH 7.25, PaCO2 75, PaO2 55
 - pH 7.18, PaCO2 60, PaO2 60
Pathophysiology

- Pitfalls
- Insidious onset
- Unrecognized
- Pediatric
- Organ status changes moment - to - moment

Don’t put too much faith in the SaO2 You need the right amount of Hgb to get the O2 where it needs to go
Ever hear of the super secret TLR-1 bombsight in fighters?

That looks about right

(P.S. Unclipped nails could throw you off up to 200 yds)
Clinical

- Ashen
- Tachypnea
- Hypotension
- Tachycardia
- Restlessness
- Combative
- Listless
Respiratory

- Inadequate O2 to the lungs - to the cells
- Anaerobic metabolism results
- Causes:
 - airway obstruction
 - asthma
 - pulmonary edema
 - carbon monoxide
 - Muscular fatigue
Respiratory

- Signs
 - Increased work of breathing
 - stridor
 - wheezes
 - rales
 - cyanosis
 - fatigue
 - altitude
“Now don’t forget, Gorok! . . . THIS time punch some holes in the lid!”
Hypovolemic

- Decreased cardiac output
- Decreased Hgb - O2 transport to the tissues
- Anaerobic metabolism
- Causes
 - Hemorrhage
 - Dehydration
 - Inadequate volume replacement
 - Burns
Hypovolemic

- Thirst
- collapsed veins
- poor skin turgor
- tachycardia
- concentrated urine
- oliguria
- hypotension
- can have normal SaO2
Cardiogenic

- Damage to the heart
- decreased pump function
- complicated by pulmonary edema
- Causes
 - Myocardial Infarction
 - Myocardial Contusion
 - Valvular Dysfunction
 - Metabolic Derangement like sepsis
Cardiogenic

- Signs
- Chest Pain
- SOB
- Dysrhythmias
- Pulmonary edema
- Diaphoresis
- Fever
Neurogenic

- Sympathetic nervous system dysfunction
- Dilation of arteries and veins
- Venous pooling, reduced venous return to the heart
- Decreased cardiac output, hypotension
- Causes

- Spinal cord injury
 - Sympathetic nervous system dysfunction
 - Head trauma
 - Encephalitis / Meningitis
 - Neurosurgical
Allergic

- Similar to neurogenic
- reaction to foreign substance [allergen]
- auto - immune cascades initiated
- varied spectrum of reaction
- usually reversible
- Causes

- Venom exposure
- medication exposure
- unknown
Allergic

- Signs
 - Hives
 - Bronchospasm
 - SOB
 - Flushing
 - Swelling
 - Coughing
 - Hypotension
 - Tachycardia
 - restless / sense of doom
Obstructive

- Pulmonary - Heart obstructions
- Causes

 - Pulmonary embolism
 - Pericardial tamponade
 - Valvular obstruction
 - Tension pneumothorax
 - Aortic dissection
 - Post operative
"Well, I guess both Warren and the cat are okay. . . But thank goodness for the Heimlich maneuver!"
Obstructive

- Signs
 - Chest pains
 - Tearing back pain
 - SOB
 - JVD
 - Distended veins
 - Hypotension
 - Tachycardia
 - Tracheal deviation
Sepsis

- Toxins produced by infectious organisms
- Endotoxins, Exotoxins, cell breakdown products
- Inhibits utilization of O2 and nutrients
- Effects organ function
- Precipitates immune cascade
Sepsis

- Fever
- Chills
- Diaphoresis
- Hypotension
- Tachycardia
- Hypothermia
- Metabolic failure
- Cardiac pump failure
Metabolic

- Hormonal and endocrine dysfunction
- Cellular dysfunction
- Medication error
- Toxins
- Causes

- Diabetes mellitus
- Diabetes insipitus
 - Adrenal
 - Thyroid
 - Pituitary
Metabolic

- Signs
 - Hypotension
 - Hypertension
 - High output failure
 - Tachycardia
 - ALOC
 - Pregnancy
 - Trauma
 - Post operative
WE HAD A LOT TO LEARN ABOUT INSTRUMENT FLYING -

HEY BLINDMAN LEADER! YOU HAPPEN TO NOTICE WHICH WAY OUR TIP TANKS WENT?
Space Constraints

- Limits the type and amount of equipment
- Parts of the patient may inaccessible
- Limits the number of crew
- Restraining devices may hinder observations and procedures
- Weight and balance considerations
- Fuel capacities
- Comfort
Cross section of the bombardier and navigator working (?) in the 24'6" spacious nose section.

What sadist designed this?!
High Background Noise

- Limits communications
- Difficult to assess subtle patient changes
- Electronic communication needed
- Auscultation difficulties
- Audible alarms ineffective
- Need to rely on visual signs
- Fatigue and stress
Vibration

- Distorts you and the monitoring equipment
- Exceeds limits of equipment
- Makes monitoring decisions difficult
Lighting

- White lighting interferes with pilot vision at night
- Red lighting limits your ability to assess your patient
- Lighted displays necessary on monitors

THE DROPPED FLASHLIGHT BIT:

Roger Army 1234 understand. P-38 on instruments 9000, cockpit lights out - expect approach...
Electromagnetic Interference

- Fields produced by monitors and electrical equipment can interfere with each other . . . Ex. MRI
- Require shielding
- Interfere with navigational instruments
- Interferes with medical instruments
- Combined with vibration can alter even the ability to follow an arterial line let alone Swan-Ganz.
Treatment of Shock
Over view

- Medical vs Traumatic
- Single system vs multi - system
- Inter - facility vs Scene
- Transport Time
- In - flight Protocols
- Composition of flight crew
- Special needs of the Patient
Airway

- Remove obstruction
- Ventilate / Oxygenate
- Secure Airway BVM , ET , Other
- Cuff pressure at altitude
- assessment / re - assessment of cuff leaks
- Lighting , Noise , Vibration , etc.
- Space in aircraft for procedure
- Transport ventilators
Cardiovascular

- Not just the vital signs
- Mean arterial pressures, auto-regulation
- Volume, type of fluids needed
- Lactic acidosis
- Limit the progression of shock or reverse
- Indwelling monitoring devices
 - A - lines
 - Swan - Ganz
 - Balloon pumps
Hemodynamic Status

- Assessment of capillary refill not that good
- Assessment of neck veins, difficult to interpret in air
- G - forces can radically alter status in the right patient
- IV fluids, blood products, temperature, air pressure can alter in flight
- Pressure bags, cuff pressures, FiO2 can change
- PASG - last resort, should be limited to BLS, not even good limb immobilizer
- Vasopressors in euvolemia
- Even shivering can increase O2 demand
Hemodynamic Status

- Vasopressors
 - Epinephrine
 - Dopamine
 - Dobutamine
 - Norepinephrine
 - Amrinone
 - Nitroprusside
 - Combinations
Hemoglobin

Arterial O2 Content

[Hgb x SaO2 x 1.34] + [PaO2 x 0.0031]

Hgb is the critical factor in O2 delivery

Hematocrit needs to be around 32%, especially in multi-system shock, especially at altitude
Gastric Decompression

- Nasogastric or oral gastric tube
- Decompresses the stomach and bowel
- Decreases the likelihood of aspiration
- Allows a route for some medications
- Can block sinus drainage and cause baro-traumatic effects
Chest Decompression

- Indicated for management mechanically ventilated patient with any pneumothorax, even BVM
- Chest tube the most ideal
- Should use a flutter valve
- Difficult to monitor in the aircraft
- Malfunction can be subtle and rapid
- May not see the usual signs in the aircraft
- Pneumothorax undetected on ground
Renal

- Urine output is a good indicator of renal perfusion
- Foley catheter to drain bladder
- Foley balloon can be effected by flight
- On the other hand, not much artifact as a result of flight
- Usual other catheter considerations
- Record volumes as a vital sign
Summary

- Complex and Dynamic
- Difficult to assess changes without complex technology
- Can change with altitude and G - forces
- Your selection of tools is limited
- Anticipation means as much as anything
- Re - assessment and Modification of treatment enroute is necessary
"Thank God, Sylvia! We're alive!"